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Moderated t - statistic

The development of the moderated t - statistic used in the manuscript is summarized here.

For further details, see ref. 1. Let the normalized response for a single gene (gene subscript

not indicated) from n arrays be denoted by yT = (y1, y2, . . . , yn). Assume E(y) = Xα where

X is a design matrix of full column rank and α is a coefficient vector. Also assume that

var(y) = Wσ2, where W is a known nonnegative definite weight matrix. Certain contrasts

of the coefficients are of interest. These contrasts are defined by β = CT α. Assume it is of

interest to test whether individual contrasts βj are equal to zero. The linear model is fit to the

responses to obtain coefficient estimators α̂, estimators s2 of σ2, and estimated covariance

matrices var(α̂) = V s2, where V is a positive definite matrix not depending on s2. The

contrast estimators are β = CT α̂ with estimated covariance matrices var(β̂) = CT V Cs2.

The ordinary t - statistic is given by tj = β̂/
(

s
√

νj

)

where νj is the jth diagonal element of

CT V C.

To develop the moderated t - statistic, priors are assumed on σ2 and βj:
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and βj|σ2, βj 6= 0 ∼ N(0, ν0jσ

2).

Let s̃2 denote the posterior mean of σ2 given s2. The moderated t - statistic is t̃j = β̂/
(

s̃
√

νj

)

.

Equivalence Calculations

As detailed in ref. 2, a design utilizing only individuals (design I) is equivalent to a design

with pools (design II) when

ts2 = ts1

[

λ

K (λ + 1) − ta1

ta2

]

(1)



Here, K = t2I/t
2

II , a ratio of Student’s t critical values; ts1 (ts2) and ta1 (ta2) denote the

total number of subjects and arrays in design I (II); λ is the ratio of biological to technical

variability.

This equation is quite simple, and could be extended. An optimal method for specifying

equivalent designs will depend on a number of factors including the method used for finding

differentially expressed genes, the desired power and error tolerance measures, distributions

of biological and technical variability across genes, and the underlying model describing

expression values. The method should also account for the possibility of aberrant RNA

samples. In designs without pooling, if an individual sample is removed, that sample and

a single array is lost. For a pooled design, all subject samples contributing to a pool are

lost along with an array. The increased impact of losing an array in a pooled design, which

will have a smaller sample size than the corresponding equivalent individual design, must be

taken into consideration.
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